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Abstract: Alzheimer’s disease (AD) is a neurodegenerative disorder with an insidious onset and
irreversible condition. Patients with mild cognitive impairment (MCI) are at high risk of converting
to AD. Early diagnosis of unstable MCI patients is therefore vital for slowing the progression to
AD. However, current diagnostic methods are either highly invasive or expensive, preventing their
wide applications. Developing low-invasive and cost-efficient screening methods is desirable as
the first-tier approach for identifying unstable MCI patients or excluding stable MCI patients. This
study developed feature selection and machine learning algorithms to identify blood-sample gene
biomarkers for predicting stable MCI patients. Two datasets obtained from the Alzheimer’s Disease
Neuroimaging Initiative (ADNI) database were utilized to conclude 29 genes biomarkers (31 probes)
for predicting stable MCI patients. A random forest-based classifier performed well with area under
the receiver operating characteristic curve (AUC) values of 0.841 and 0.775 for cross-validation
and test datasets, respectively. For patients with a prediction score greater than 0.9, an excellent
concordance of 97% was obtained, showing the usefulness of the proposed method for identifying
stable MCI patients. In the context of precision medicine, the proposed prediction model is expected
to be useful for identifying stable MCI patients and providing medical doctors and patients with new
first-tier diagnosis options.

Keywords: random forest; gene biomarkers; feature selection; mild cognitive impairment;
Alzheimer’s disease

1. Introduction

Alzheimer’s disease (AD) is an irreversible neurodegenerative condition characterized
by progressive cognitive and memory impairments, which negatively influence an indi-
vidual’s daily life and the social healthcare system [1]. The total cost of care and treatment
related to AD worldwide reaches up to USD 1 trillion per year [2]. As of now, there is
no cure for AD, and currently available treatments can only postpone the progression
of the disease [3]. Several independent studies indicated that treatment decisions would
greatly benefit from early diagnosis, which may delay the progression of AD [2,4–6]. In
clinical trials, cholinesterase inhibitors (ChEIs) have demonstrated therapeutic benefits for
symptoms of cognition, function, and behavior across the disease course [7,8]. These agents
are most effective when started early in the disease course and persistently used without
treatment gaps.

It was reported that 10.0–15.0% of patients diagnosed with mild cognitive impairment
(MCI), an intermediate stage between normal aging (NL) and AD, will develop AD within
the first year [9]. After six years of follow-up, approximately 80.0% of MCI patients would
convert to AD [1,9]. Therefore, it is of high clinical interest to develop prognostic markers
for the early detection of unstable MCI patients [8]. Several early diagnostic methods
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were developed in recent years with high accuracy. Successful cases include image-based
methods of magnetic resonance imaging (MRI) and positron emission tomography (PET),
and cerebrospinal fluid (CSF)-based protein biomarkers [10–28]. However, the image-based
methods are expensive, and CSF-based methods require highly invasive lumbar puncture.
It is therefore of special interest to develop low-invasive and cost-effective alternatives,
such as plasma-based gene biomarkers [29–33]. Owing to the limited number of samples,
their generalization ability may require further validation. Furthermore, the accuracy of
low-invasive alternatives may not be sufficient for replacing the image- and CSF-based
methods. Instead, they can be applied as first-tier screening methods to identify potential
unstable MCI patients or exclude stable MCI patients for image- and CSF-based methods.

This study, therefore, proposed to develop a cost-effective and low-invasive screening
method based on plasma gene biomarkers for distinguishing stable and unstable MCI
patients. Gene expression and corresponding diagnosis data of study subjects were obtained
from the Alzheimer’s Disease Neuroimaging Initiative (ADNI). Machine learning and
feature selection algorithms were developed to identify biomarkers for predicting stable
MCI patients. The overfitting issues caused by the small number of subjects for biomarkers
identification were overcome by incorporating a bigger progression dataset considering any
progression from NL and MCI. Based on the two datasets, a common gene set of 31 probes
was identified with robust predictive performance. MCI patients with a high stable score
can be identified by the developed model with a high accuracy of over 90%. For clinical
usage, the developed model offers a new precision diagnosis option with low cost and high
efficiency for filtering out MCI patients unlikely to convert to AD. The resource-intensive
and invasive diagnostic methods can be reserved for the other patients. It is expected to
reduce the overwhelming financial burden of medical care.

2. Materials and Methods
2.1. Dataset

Gene expression and corresponding diagnosis data of study subjects were obtained
from the database of Alzheimer’s Disease Neuroimaging Initiative (ADNI) [4]. The primary
goal of ADNI is to support the intervention, prevention, and treatment of AD through the
application of new diagnostic methods at the earliest possible stages. Data of serial MRI,
PET, biological markers, and clinical and neuropsychological assessment are available at
http://adni.loni.usc.edu/ (accessed on 10 June 2020). This study considered only the gene
expression data from plasma samples.

Patients with diagnosis data both in the enrollment and second-year follow-up and
gene expression data from plasma sampled in the enrollment were first identified. A total
of 577 subjects were utilized in this study for biomarker identification and belonged to
three groups: NL, MCI, and AD. The numbers of subjects for NL, MCI, and AD are 195,
271, and 112, respectively. Two types of progression models were considered in this study.
The first model (named StableMCI model) distinguishes stable MCI patients from unstable
MCI patients diagnosed with AD in the second-year follow-up. The second model (named
Progression model) considered any progression toward AD, including NL conversion to
MCI, NL conversion to AD, and MCI conversion to AD. The development of the StableMCI
Model is the primary aim of this study. At the same time, the Progression model was
utilized to facilitate the selection of biomarkers for improving the prediction of stable MCI
patients.

Specifically, 358 subjects were identified for developing the Stable MCI model with 46
stable and 312 unstable MCI patients, respectively. There are 577 subjects with 69 unstable
and 508 stable patients for developing the Progression model. The gene expression data
for each subject was obtained from ADNI and was based on the Affymetrix Human
Genome U219 Array with RMA (robust multichip average) preprocessing method [34]. The
gene expression data consisting of 49,386 probes was then log2-transformed and z-score
normalized to form the feature vector for each subject using the scikit-learn package. Each
of the two sets was randomly divided into a training dataset and a test dataset with a ratio
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of 4:1. The training datasets were utilized for feature selection and model development.
Their corresponding test datasets were used for the independent test of the developed
models.

2.2. Model Development

Given a large number of features in our dataset, this study applied a rank-based feature
selection method to identify the informative features for predicting stable MCI patients.
The rank-based method consists of two steps. First, a filter-based method is applied to rank
features. The second step applies a wrapper-based method to include top-ranking features
until the user-specified convergence condition. Compared to wrapper-based methods,
rank-based methods are more computationally efficient and are widely used in previous
studies [35–39]. First, chi-square tests were applied to calculate the chi-square value for
each probe using the training dataset. Second, the top-n probes were utilized as a feature
vector for machine learning, where n ∈ {1, 5, 10, 15, 20, 25, 50, 100, 250, 500, 1000, 49386}.
Subsequently, 10-fold cross-validation (10-CV) was conducted to evaluate the area under
the receiver operating characteristic curve (AUC) performance for each number of n. Finally,
the feature number n giving the highest AUC value was selected as the informative feature
for developing a final model. The AUC value ranged from 0 (worse) to 1 (best).

In this study, a random forest algorithm was applied to develop prediction models.
The algorithm was developed by Leo Breiman for learning tree ensembles which were
used for classification and regression problems [40]. Each decision tree was constructed
based on bootstrap samples and randomly selected variables. A majority vote of outputs
from all decision trees was applied to make the final prediction. Random forest is shown
to be effective and robust for small datasets [41–45] and is considered suitable for this
study. The percentage of stable prediction was utilized as the prediction score ranging
from 1 (stable) to 0 (unstable). Two parameters of the number of trees and features for
constructing a decision tree were set to 100 and log2(total features + 1). The feature selection
and random forest algorithms were implemented using the WEKA (Waikato Environment
for Knowledge Analysis) package of version 3.8.4.

3. Results and Discussion
3.1. Subject Characteristics

The included individuals in this study were identified from ADNI studies. The de-
mographic statistics of the study population are shown in Table 1. A total of 732 subjects
(StableMCI: 358, Progression: 577) were included in the present study whose gene expres-
sion profiles from blood samples were available for biomarker identification. For StableMCI
and Progression datasets, the average chronological ages were 73.5 and 74.4, and the ratios
of males were 57.5% and 54.0%, respectively. Both age and gender showed no significant
difference in StableMCI and Progression datasets (Table 1).

Table 1. Characteristics information of datasets for biomarker identification.

Stablemci Dataset Progression Dataset

Unstable Stable p-Value Unstable Stable p-Value

Number of
samples 46 312 69 508

Age ± years 1 74.6 ± 7.5 72.4 ± 8.6 0.52 75.2 ± 7.2 73.6 ± 8.0 0.28
Gender (M/F) 24/22 182/130 0.74 35/34 277/231 0.64

1 Continuous variables are presented as mean ± standard deviation, and categorical variables are presented as
numbers.

3.2. Identification of Gene Biomarkers

The overall workflow of this study is illustrated in Figure 1. In brief, datasets were
extracted from ANDI database and were divided into training and test datasets in a ratio of
4:1 (Figure 1A). A rank-based feature selection algorithm was applied to select informative
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features with the highest 10-CV performance from 49,386 probes. Prediction models were
developed based on the identified informative features and corresponding training dataset.
The constructed models were evaluated using the testing dataset.

Figure 1. Flow diagram of the present work.

This study focused on the prediction of stable MCI patients using gene biomarkers. A
set of 358 subjects (the StableMCI dataset) were utilized for developing prediction models
using the random forest algorithm. First, a chi-square test was applied to rank the probes
based on the training dataset. Subsequently, the 10-CV performance of the top n features
was evaluated. Since the samples of stable and unstable are unbalanced, the non-parametric
AUC measurement was used for evaluating the performance of built models. As shown
in Figure 2, the top 250 features gave the highest AUC performance of 0.919. A huge
improvement was obtained compared to the AUC value of 0.382 for the classifier using
all 49,386 probes. Since the training dataset is small, the feature selection and model
development process is likely to be overfitted. Therefore, it is not surprising to see the poor
performance of the classifier built on the top 250 features and the whole training dataset
with a low test AUC of 0.439 on the test dataset.

Figure 2. Rank-based feature selection of predictive probes for predicting stable MCI patients.

While data size is critical for the machine learning task, it is unlikely to obtain a greater
number of samples from ADNI in the near future. We therefore proposed to incorporate
additional information from the ADNI database. A Progression dataset with 577 subjects
was prepared and utilized for feature selection of predictive probes for any progression
from NL and MCI to AD. The hypothesis of this study is that true predictive biomarkers
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for AD should be both useful for predicting stable MCI patients and any progression to
AD. The chi-square test was again applied to rank the probes for the Progression dataset,
and the AUC performance of the top 250 probes were 0.856 and 0.556 for cross-validation
and test, respectively. A total of 31 common probes in the two sets of top 250 probes were
then identified. Based on the 31 common probes, reduced cross-validation performance of
AUC values of 0.841 and 0.772 was observed for the StableMCI and Progression datasets,
respectively. Please note that a few machine learning algorithms, including k-nearest
neighbors, naive Bayes, decision tree, and logistic regression, were also evaluated for
their prediction performance. However, all of them performed worse than the random
forest classifier presented in this study with AUC values less than 0.8. In contrast, the test
performance was largely improved, with AUC values of 0.775 and 0.687 for the StableMCI
and Progression datasets, respectively. The common probes were considered more robust
than the individual probe sets identified from the StableMCI and Progression datasets.
The 31 common probes were then utilized to construct the final model for the following
analysis.

3.3. Independent Test

To evaluate the generalization ability of the StableMCI model built with the 31 common
probes, two independent datasets were extracted from ADNI with the same criteria except
that the selection of subjects is based on the first-year (StableMCI-1y) and third-year
(StableMCI-3y) diagnosis results. To avoid overestimation of prediction performance,
subjects included in the StableMCI dataset were excluded from the following analysis.
The numbers of unstable and stable subjects are 14 and 130 for StableMCI-1y, and 12 and
53 for StableMCI-3y. Note that the subjects of StableMCI-1y and StableMCI-3y datasets
are different from the subjects of the StableMCI dataset. The StableMCI model built with
the 31 common probes performed well, with AUC performance of 0.832 and 0.765 for
StableMCI-1y and StableMCI-3y, respectively.

The developed machine learning model with good AUC values can be applied to
prioritize the MCI patients for progression to AD. To further evaluate the usefulness of the
prediction scores made by the developed model, the MCI patients with a StableMCI score
greater than thresholds of 0.5, 0.6, 0.7, 0.8, and 0.9 were identified, and the corresponding
concordance was calculated. As shown in Figure 3, a higher threshold of the StableMCI
score leads to better concordance in all of the datasets of StableMCI, StableMCI-1y, and
StableMCI-3y. For the threshold of 0.9, excellent concordance of 97.3% (143/147) and 96.7%
(29/30) and coverage of 51.2% and 42.3% were obtained for the 10-CV and test in the
StableMCI dataset, respectively. Only four and one patients with a StableMCI score greater
than 0.9 were converted to AD. For StableMCI-1y and StableMCI-3y, the same threshold
gives excellent concordance of 97.8% (89/91) and 92.3% (48/52), with coverage of 63.2%
and 73.2%, respectively.

Figure 3. Concordance for various thresholds of the StableMCI score.

While good performance was obtained from this study, it is interesting to compare
the proposed method with previous studies. We found one study utilizing the same data
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source and developing a prediction model based on plasma gene biomarkers [29]. In the
study, only 66 patients were included in their study. Two partial least square regression
models based on 1123 and 225 genes yielded 74% and 77% accuracy using leave-one-out
cross-validation. Please note that prediction performance based on only cross-validation
without further testing on external datasets could be overestimated. Our model based on
only 31 probes is more practical for clinical use and provides better performance than the
previous study.

3.4. Analysis of the Identified Gene Biomarkers

To provide a better understanding of the association between the 31 common probes
(29 genes) and AD, a literature search and enrichment analysis were conducted. First,
the keywords of “Alzheimer’s disease” and “dementia” were utilized along with each
gene name to search PubMed for identifying published studies with both genes and
AD/dementia. As shown in Table 2, 13 and 11 genes were mentioned in the published
literature with Alzheimer’s disease and dementia, respectively. Notably, several genes
identified in this study are known to be associated with AD. For example, the upregulation
of CXCR2 could result in increased production of amyloid-β (Aβ) [46]. CLN3 affects the
metabolism of the Aβ protein precursor [47]. Inhibition of CAMKK2 protects hippocam-
pal neurons from the synaptogenic effects of Aβ42 oligomers [48]. The other genes not
mentioned in the AD/dementia papers can be further investigated for their roles in AD.

Table 2. Co-occurrence analysis of the identified 31 probes (29 genes) and AD/dementia in published
literature and corresponding test AUC.

Probes Gene Test AUC for Each
Probe

Number of Papers
Related to AD

Number of Papers
Related to Dementia

11750555_a_at NUP214 0.669 0 0
11715122_at RAB3D 0.634 0 0
11731423_at

CXCR2
0.625

21 2311731424_x_at 0.530
11731425_at 0.502

11731472_a_at
TMEM70

0.619
1 011731473_at 0.611

11755078_a_at TADA2B 0.613 0 0
11731379_x_at MED25 0.599 0 1
11731508_a_at ZNF649 0.587 0 0
11716944_a_at YIPF3 0.582 0 0

11731513_at XPO4 0.581 1 0
11724775_at FDX1 0.571 0 0

11722278_a_at SMUG1 0.566 0 0
11731478_x_at

CHMP1B
0.565

1 011731477_at 0.473
11731375_a_at CAMKK2 0.534 8 7
11731422_s_at FCGR3A 0.534 0 1
11724369_at KIAA1644 0.514 0 0

11731479_s_at TXNDC9 0.513 1 0
11730994_at S1PR4 0.509 0 0

11722300_a_at ETS1 0.506 4 4
11731409_at SLC8A2 0.499 3 2

11723938_s_at GLOD4 0.487 1 0
11755519_x_at TGS1 0.446 0 0
11731471_a_at AKT2 0.444 5 3
11731408_x_at CLN3 0.434 6 24
11731475_a_at SFRP4 0.433 0 0
11727610_at ENSA 0.394 3 1

11731476_x_at MYL1 0.387 0 1
11731377_s_at RABL2B || RABL2A 0.376 1 1
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Some known AD markers, such as TDP43 and tau, were not identified from this study.
Our analysis showed both genes of TDP43 and tau are included in the probe list of the
studied dataset. However, they were not identified in this study based on the rank-based
method. Both algorithmic or biological conditions could be responsible for the exclusion.
First, since the dataset is not very big, and a data-driven approach is utilized for the
identification of biomarkers, sampling bias could underrate the importance of the two
genes. Second, the ranking could be further affected by potential diagnosis errors and
experimental variation. Third, the gene expression profiling was done in the enrollment
stage, where the gene expression level of the two AD markers may not be affected yet.

4. Conclusions

Early detection of unstable MCI patients is important for better disease management.
Current diagnosis methods are, however, highly invasive and expensive. Therefore, this
study developed a machine learning model based on gene biomarkers for predicting stable
MCI patients. A set of gene probes was first identified from the StableMCI dataset. How-
ever, overfitting issues were observed due to the small size of the dataset. An additional
Progression dataset was then utilized to derive an additional set of gene probes. A total of 31
common probes were identified with good AUC performance of 0.841 and 0.775 for 10-CV
and test, respectively. External tests on unseen subjects of StableMCI-1y and StableMCI-3y
datasets achieved good AUC performance of 0.832 and 0.765, respectively. The results
showed that the proposed strategy for gene biomarker identification by incorporating the
information of any progression to AD is successful.

Among the 29 gene biomarkers (31 probes) identified in this study, 13 and 11 genes
were mentioned in the published literature with Alzheimer’s disease and dementia, respec-
tively. Since the expression levels of genes may not be directly related to the inhibitory
activity of AD, further experiments are required for studying their roles in AD progression.
We also noticed that some known AD markers were not included in the studied dataset.
The inclusion of more comprehensive datasets is expected to further improve the study.
The investigation of the identified genes without associated papers is also desirable.

Altogether, the proposed method provides an economic and low-invasive way for
the identification of stable MCI patients. While the prediction performance is good, more
advanced machine learning algorithms such as XGBoost could be further developed to
improve the prediction performance. Based on the proposed method, the identified stable
MCI patients will not suffer from invasive or high-cost diagnoses. In addition, medical sys-
tems are expected to benefit from the proposed method for resource reallocation, facilitating
the precision diagnosis of AD.
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